

Question 11.1: Hardware- vs. Software-Walked Page Tables

- a. What's the difference between the use of hardware-walked page tables and softwarewalked page tables? How does this relate to TLBs?
- b. What difference can you make out in the contents of software-walked vs. hardwarewalked multi-level page tables?
- c. Under what circumstances are TLB miss handlers or page fault handlers invoked?

Question 11.2: Page Fault Handling

- a. Explain the terms demand-paging and pre-paging. What are the respective strengths and weaknesses?
- b. When a thread touches a page for the first time with demand-paging, a page fault will occur. Classify the page fault according to where the data for the unmapped page has to be fetched from by the page fault handler.
- c. If the process has been running for some time, modifying data along its way, there is one additional case that needs to be covered on a page fault. Which?
- d. Discuss which information is required by the page fault handler to correctly setup (or restore) the contents of accessed pages.
- e. Can you reuse page table entries to store some of this information? Is it a good idea?
- f. What is Copy-on-Write? How can it be implemented?
- g. Recap: Describe the steps necessary to handle a page fault in an application's address space.

Question 11.3: Page Replacement Basics

- a. The pager of some systems tries to always offer a certain amount of free page frames to improve paging. What is the basic idea behind such a pager?
- b. Describe the difference between a global and a local page replacement algorithm. Discuss the advantages and disadvantages of each of them.
- c. Does a virtual memory system implementing equal allocation require a global or a local page replacement policy? Justify your answer.
- d. What is thrashing? When does it occur?
- e. What is the working set of a process? How can the working set be used to prevent thrashing?

Question 11.4: Page Replacement Policies

a. A task has four page frames $(0, \ldots, 3)$ allocated to it. The virtual page number of each page frame, the time of the last loading of a page into each page frame, the time of the last access to the page frame, and the referenced (*R*) and modified (*M*) bits of each page frame are shown in the following table.

frame	virtual page	load time	access time	referenced	modified
0	2	60	161	0	1
1	1	130	160	0	0
2	0	26	162	1	0
3	3	20	163	1	1

A pagefault to virtual page 4 occurs. Which page frame will have its contents replaced for the *FIFO*, *LRU*, *Clock* and *Optimal* (with respect to the number of page replacements) replacement policies?

For the Clock algorithm assume that the circular buffer is ordered ascending by load time and that the next-frame pointer refers to frame 3.

For the Optimal algorithm use the following string for subsequent references: 4, 0, 0, 0, 2, 4, 2, 1, 0, 3, 2.

Explain the reason in each case.

b. Evaluate *stack*, *code*, and *heap* as to how well you expect the LRU page replacement policy to perform on them. Explain your opinion for each segment.